
Voxelization of boundary representations using oriented LEGO®plates

Bram Lambrecht∗
CS284: Computer Aided Geometric Design

University of California, Berkeley

Figure 1: A Stanford bunny in LEGO form. On the left is the standard studs-up construction method. On the right is our new method using
oriented LEGO plates to achieve a higher level of detail in a sculpture with the same overall dimensions.

Abstract

In this paper, we propose a new method for designing LEGO sculp-
tures by treating LEGO pieces as thin voxels which can be oriented
in any of the principle Cartesian directions. Our software quickly
converts a triangle mesh boundary representation into a thick layer
of 1×1 LEGO plates, compromising between detail representation
and building ease.

1 Introduction

LEGO bricks are a convenient and fun medium for constructing
sculptures. The LEGO company has impressed visitors to Legoland
parks with large colorful figures, animals, and other designs for
decades. In recent years, many adults have returned to their child-
hood LEGO toys as a hobby. Some of these skilled LEGO artists
have built sculptures which rival or exceed those built by employees
of the company.

Building detailed LEGO sculptures freehand takes a considerable
amount of skill and a very large collection of LEGO bricks. The
standard LEGO resolution is rather coarse—a 1×1 brick is 8.0mm

∗e-mail: bram@berkeley.edu

wide by 9.6mm tall—so small sculptures become blocky. The res-
olution can be improved by using one third height plates instead of
bricks. This only improves the resolution in the vertical direction.
However, LEGO produces several specialized elements which al-
low the builder to break out of the traditional “studs up” building
style (Fig. 2). Building “studs out” aligns the smallest dimension
of each plate with the direction in which it provides the most detail
(Fig. 1).

To make LEGO sculpture building accessible to less experienced
sculptors, and to improve the detail available in smaller models,
we have developed software which converts a solid model into a

Figure 2: Some of the specialized LEGO pieces that allow orthog-
onal connections, promoting studs out building techniques.

LEGO representation. The software accepts a triangle mesh input
and outputs a LEGO model in LDraw1 format.

Our goal is to create a LEGO representation which is both buildable
and detailed. Thus, we must compromise between orienting pieces
in the same direction as their neighbors for easy connections, and
orienting pieces in the direction that best represents the surface.

2 Method

Polygon meshes form the basis of many popular 3D object repre-
sentation formats. Triangulated data sets are easy to find on the
World Wide Web, and can be generated by most computer aided
design software. Therefore, our method focuses on voxelizing tri-
angular meshes. We assume that triangle vertices are provided in
counter-clockwise order, thus defining an inside and an outside re-
gion for each face. Meshes with holes or boundaries are supported,
but may create undesirable results.

The conversion from an input PLY or STL boundary representa-
tion to a buildable LEGO representation is performed in four steps.
First, we partition the input triangular mesh into uniform cubical
regions. Next, we identify the average normal direction for each
cube. We use the average direction to fill each cube with oriented
voxels. Finally, we optimize the configuration of cubes to create
large regions of voxels oriented the same way.

2.1 Space partitioning

To create a facsimile of a closed polygon object using LEGO plates,
the space intersected by the polygonal object must be voxelized. We
leave the inside of the voxelization hollow to reduce the number of
LEGO pieces required for construction and to leave room for sup-
port structures and orthogonal connection pieces. To speed up the
voxelization and to ensure that the final surface representation fits
together without cracks, the space near the surface is first tessel-
lated into uniform tiles. A convenient uniform tile for tessellating
this space is a cube. A cube can be oriented in any of the six prin-
ciple directions without breaking the tessellation. Furthermore, a
cube may be built from a small number of LEGO pieces (Fig. 3).

We partition the polygonal object into axis aligned cubes by evalu-
ating the size and location of the axis aligned bounding box of each
face in the polygonal object. Each cube is stored as a location and
a list of pointers to faces. We iterate through the cubes which the
bounding box of a face intersects and add a pointer to the face in
each of those cubes. After iterating through every face, we have a
list of cubes, each of which contains or intersects a number of faces
of the original polygon object.

1LDraw is a popular system of free LEGO -based computer aided design

software. Details are available at http://www.ldraw.org/

Figure 3: Twenty of the smallest LEGO element, a 1× 1 plate, in
four columns of five plates each yields the smallest cube possible
given the aspect ratio of LEGO pieces.

Figure 4: The sum of the area weighted face normals (red) is a poor
approximation for the orientation of the surfaces in a thin cube. By
selectively flipping normal vectors across the faces, a much better
average normal vector is found (blue).

2.2 Computing cube orientation

Since each cube contains only a small section of the original tri-
angulated surface, we assume that the surface in the cube can be
represented by an average normal vector �navg which describes the
primary orientation of that surface. This average normal will be
used to determine the preliminary orientation of the LEGO plates
which will best represent the surface.

If the N faces in a cube are all part of the same nearly planar surface,
then a good average normal vector is the sum of the area weighted
normal vectors �a of each face.

�n =
N

∑
i=1

�ai (1)

However, a cube may contain faces which are parts of different,
nearly parallel surfaces. We call such cubes “thin.” The sum of the
normal vectors of all the faces is a poor approximation to the actual
direction of the surfaces in a thin cube, so we need some method
for identifying thin cubes (Fig. 4).

We are primarily interested in how �navg compares to the possible
orientations of LEGO pieces in each cube. Conveniently, we store
normal vectors as coordinate triples in the same principle direc-
tions. Let an area weighted normal vector of a face be defined as
�a = 〈a1,a2,a3〉. If

N

∑
i=1

∣∣(a j
)

i

∣∣ >

∣∣∣∣∣
N

∑
i=1

(
a j

)
i

∣∣∣∣∣ , j ∈ {1,2,3} (2)

then the cube contains faces with normals in opposite j directions.
Thus, the cube is j-thin. Next, we select the primary principle ori-
entation of the faces in the cube. Let

k = {1,2,3} such that
N

∑
i=1

|(ak)i| is maximized (3)

Then, we compute the average normal of the faces in the cube as
follows.

�navg =
nk

|nk|
N

∑
i=1

�a∗i (4)

�a∗ =
{

�a if ak ≥ 0
−�a if ak < 0

(5)

where nk is the k component of (1) and k is given by (3). Note that
(4) gives the same results as (1) for cubes which are not k-thin.

We compute and remember a unit length �navg for each cube. In
addition, the k component is the maximum component of �navg for
each cube, so the orientation of voxels in the cube is initialized in
the k direction.

Figure 5: Ray casting intersection points (yellow) yield only a par-
tial voxelization (light gray). Thus, if no ray intersections are found
for the faces in a cube (blue), we check the neighboring cube to
avoid any holes in the voxelization. Once an intersection is found,
we can identify that the red voxels are inside the object, and should
be turned on.

2.3 Voxelization

Once an orientation is selected for each cube, we raycast to find
actual intersection locations in the cube as in [Thon et al. 2004].
We cast a ray in the chosen axis-aligned direction j along the center
of each column of voxels in a cube. Then, we iterate through the
faces in the cube and test for intersection with the ray. If a cube
is not j-thin, we stop after finding one intersection. Otherwise, we
test each face against the ray.

In the current implementation, all faces must be triangles. Ray-
triangle intersection tests are sped up by collapsing the the test to
two dimensions by dropping the j coordinate from the triangle ver-
tices and bounding box corners. First we test the ray (now a point)
against the bounding rectangle of the triangle. If the point passes,
we check if the point is inside the triangle by testing if the point
is always on the left or always on the right of all three sides of the
sides of the triangle [Moreno 1998].

If the point is inside the triangle, we find the actual point of inter-
section �p using the normal vector �n of the triangle and one of its
vertices�v. If �q is a point on the ray, the j coordinate of the point of
intersection �p is

p j = q j +
�n · (�v−�q)

n j
(6)

The other components of �p are the same as�q. In addition to storing
the intersection point, we also store the direction d, which tells us
whether the ray intersects the triangle from the inside or the outside
the object.

d =
n j

|n j| = ±1 (7)

If the ray does not intersect any faces in the given cube, faces in the
next and previous cubes in the j direction are tested recursively in
order to avoid holes in the final voxelization (Fig. 5). We stopping
testing neighboring cubes when an intersection is found, or when
there are no more adjacent cubes in the j direction.

After all the intersections of a cast ray are found, the cube may be
voxelized along the column corresponding to that ray. To do so,
we iterate through the intersections ordered by the j component.
We turn on all voxels whose centers lie between intersection points
which are inside the object.

If after casting rays for every column of voxels in a cube, no voxels
are turned on, then the orientation of the cube is switched and vox-
elized in the next direction. If no voxels are turned on in any of the
three orientations, then the empty cube is deleted so that it will not
affect the optimization.

2.4 Cube configuration optimization

After initializing the voxelization in each cube, we wish to opti-
mize the configuration of each cube. Cubes which have the same
orientation j and the same direction d (±1) as neighboring cubes
are easier to connect together when building the final representa-
tion out of real LEGO pieces.

First, we iterate through all cubes and identify which of their six
possible face-neighbors exist. Next, we develop an energy func-
tional E which penalizes cubes which do not match their neighbors.

E j,d = α
(

1−|(navg
)

j |
)

+βB+ γ
6

∑
i=1

Hi (8)

B =

{
1 if d �= (navg) j

|(navg) j | and cube is not j-thin

0 otherwise
(9)

H =
{

η if di �= d or ji �= j
0 otherwise

(10)

The first two terms of E try to keep the cube in the initialized con-
figuration, while the H term adds energy for each neighboring cube
i with orientation ji and direction di which does not match the orig-
inal cube. The energy added η depends on a number of user op-
tions which include extra weight for cubes with few neighbors, thin
cubes, cubes with the same orientation but different direction, or
cubes which share front or back faces with the cube whose energy
we wish to compute. The ad hoc default values for the user defined
weights are (α = 0.25,β = 0.25,γ = 0.50,η = 1.0).

We compute the current energy functional and the five other possi-
ble energies (for the other choices of the orientation j and direction
d) for each cube. If the minimum E is less than the current E, we
enqueue the cube with a value ε .

ε = Ecurrent −Emin (11)

After iterating through all cubes, we have a short queue of cubes
which can be improved. We remove the cube with the largest ε
from the queue and switch its configuration to its minimum energy
configuration. Next, we recompute ε for each of the cube’s face
neighbors, and update the queue. This process is repeated until the
queue is empty or a prescribed maximum number of iterations is
reached.

3 Results

Our voxelization method produces LEGO sculpture shapes which
provide a higher level of detail than the traditional studs-up build-
ing method (Fig. 1). Since we make a good approximation of the
direction of surfaces, thin sections of input objects will be con-
structed such that high levels of detail are preserved without sac-
rificing structural integrity (Fig. 6).

The conversion is fast for large meshes. A full Stanford bunny with
69,451 triangles is converted to an LDraw model in less than 500
milliseconds. Almost half this time is spent ray-casting to create

Figure 6: Studs up (left) and studs out (right) versions of a 50cm
tall angel statue. Notice the improved detail in the thin sections of
folded cloth achieved by reorienting the LEGO pieces.

the initial voxelization. The optimization step is fast, typically tak-
ing less than 5% of the total running time. Since the LEGO rep-
resentation usually has a resolution lower than the polygon object,
decimated meshes can be used to improve speed if necessary. The
interactive speed allows the user to experiment with multiple set-
tings to create a better LEGO model. In any case, the time spent
creating the voxelization is trivial when compared to the six hours
required to build the bunny in Fig. 1 with real LEGO pieces!

4 Discussion

Since our method uses the normal vectors of intersected faces to
determine whether voxels are inside or outside the object, self inter-
secting meshes, improperly oriented triangles, or meshes with holes

Figure 7: A self intersecting mesh in the elephant model (left) ex-
poses faces with normals facing the wrong direction (red). Thus,
cubes intersecting those faces will be considered to be inside the
object, yielding an incorrect voxelization (right).

can cause voxels to appear in undesired locations (Fig. 7). Since we
are only interested in the surface of the LEGO representation (not
the contained volume), other voxelization techniques could be used,
and could provide more robust performance. However, care must
be taken to avoid unwanted holes or extra voxels regardless of the
method used.

The current implementation only optimizes the voxelization using
information about the orientation of each cubical region containing
voxels. The actual voxels appearing in each cube are not analyzed.
Thus, the resulting LEGO representation may be poorly connected
or structurally unsound.

In addition to some analysis of the voxels, using a larger neighbor-
hood beyond the six face neighbors of each cube for the optimiza-
tion step could further improve connectivity and buildability of the
final sculpture. Notice in Fig. 1 that the ears contain pieces which
are not oriented the same way. Tuning the user parameters for the
optimization step can improve the configuration of these pieces to
some extent. But, for a significant improvement, a larger neighbor-
hood of cubes must be examined.

The LDraw file produced by our software consists solely of 1× 1
plates, which will not result in a connected LEGO model. Selection
of the actual plates and bricks which will yield a strong model are
left to an enthusiastic builder. Additionally, the builder must choose
and find suitable locations for the specialized pieces which allow
orthogonal regions of plates and bricks to be attached to each other
on the interior of the sculpture. David Winkler has solved the first
task with his studs-up sculpture software. Thus, future work might
yield more complete studs-out LEGO sculpture design software.

5 Acknowledgments

Thanks to Carlo H. Séquin and David Winkler for their comments
and suggestions. The bunny and angel models are from the Stan-
ford Computer Graphics Laboratory. The elephant model is from
the Princeton Suggestive Contour Gallery. Our software uses the
RPly library by Diego Nehab and the smVector library by James F.
O’Brien.

6 Useful Software

3D Object Converter, a viewing and conversion utility for many dif-
ferent file formats, including SMF, PLY and STL.

QSlim, a smart mesh decimation utility (works on SMF files).

LDView, an OpenGL renderer for LDraw files.

L3P, an LDraw to POV-Ray conversion utility.

POV-Ray, a ray-tracing renderer which supports radiosity.

References

MORENO, C. 1998. Efficient 2-d geometric operations, part 1.
C/C++ Users Journal 16, 11 (November), 25 – 36.

THON, S., GESQUIRE, G., AND RAFFIN, R. 2004. A low cost
antialiased space filled voxelization of polygonal objects. In
GraphiCon 2004, 71 – 78.

